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Abstract. The embedded-atom model (EAM) is applied to the study of vacancy formation in bulk
aluminium and lithium. A systematic study is undertaken into the sensitivity of the EAM potentials
and embedding energy functionals as a function of the unrelaxed vacancy formation energy which
is normally obtained viaab initio density functional calculations. The effect of this ‘empirical’
input parameter on the vacancy relaxation energy, formation volume and structural relaxation is
also investigated using super-cell sizes not normally accessible in orbital-basedab initio relaxation
studies. We find that for aluminium, for which at most a fifth-nearest-neighbour model is required,
the vacancy relaxation energy and formation volume are not sensitive functions of the unrelaxed
vacancy formation energy. For lithium, for which at least a ninth-nearest-neighbour model is
needed, the situation is somewhat different: both the vacancy relaxation energy and the formation
volume are found to be a noticeably related to the unrelaxed vacancy formation energy. For
both solids, the structural relaxation was found to be largely insensitive to the unrelaxed vacancy
formation energy, agreeing well with previousab initio calculations. In particular for aluminium,
the EAM result agrees extremely well with recent orbital-free density functional calculations which
use super-cell sizes approaching those used here. Finally, we find that for lithium, the embedding
energy functional has negligible curvature for a wide range of local electronic densities, justifying
the use of a simpler pair potential description for lithium in mildly inhomogeneous systems.

1. Introduction

With the advent of density functional molecular dynamics [1, 2], the simulation of relatively
large super-cells in which both the ionic and electronic degrees of freedom are treated in an
ab initio way provides a powerful first-principles tools for studying the properties of complex
materials. The underlying disadvantage is that for metals the orbital-based procedure typically
scales asN3 (where in this caseN is the number of atoms per super-cell) and therefore cannot
be currently applied to systems beyond a few hundred atoms. On the other hand, orbital-
free density functional theory [3–5] (DFT) shows promising signs of achieving near order-
N scalability, although the correct choice of the kinetic energy functional is still somewhat
arbitrary and for many materials (such as lithium) an adequate local pseudopotential description
does not yet exist.

To study alloy systems, large super-cell molecular-dynamics (MD) simulations are needed
and a less fundamental calculation of the cohesive energy is therefore needed. The embedded-
atom model [6, 7] (EAM) provides one such description, providing a physically appealing
picture of the interactions between atoms (ions) that is especially suited to metals—where the
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electronic contribution to the cohesive energy dominates. Here, for each single-atom energy
contribution, there exists, in addition to an (effective) electrostatic inter-atomic potential, an
energy term depending on the local electronic density and thereby replacing the global density-
dependent term often arising when considering the nearly-free-electron gas of metals. This
term is referred to as the embedding energy and represents the energy required to place an
atom in its surrounding unperturbed electron density. With such a local definition of volume
through the local electron density, the EAM is particularly suited to the study of inhomogeneous
systems and has been applied to a variety of large systems containing up to 108 atoms [8].

Although the EAM formalism has its origins in density functional theory, its application
is largely semi-empirical. Generally the embedding energy and inter-atomic potentials for
a pure substance are chosen to reproduce bulk equilibrium properties. These functions can
be formulated to exactly reproduce the bulk equilibrium lattice constant and cohesive energy.
The remaining degrees of freedom are determined by numerical fitting to the elastic constants
and the unrelaxed vacancy formation energy. The latter is, of course, not experimentally
obtainable and one must resort to DFT simulations of super-cells containing a single vacancy.
On the other hand, if the relaxation energy (the difference between the relaxed and unrelaxed
formation energy) is expected to be small for a particular material, then one may justifiably
ignore relaxation effects and use the experimentally obtained relaxed value as a direct input to
the EAM fitting procedure.

In the present work we apply the EAM to bulk aluminium and lithium to investigate
the corresponding vacancy relaxation processes. Using a range of previously published DFT
results for the unrelaxed vacancy formation energy, we examine its effect on the resulting
inter-atomic potential and embedding energy functional by calculating the vacancy relaxation
energy and measuring the structural relaxation around the vacancy. Although we do not at
present consider the composite system, we have chosen aluminium and lithium primarily with
a view to developing an EAM representation for the Al–Li family of alloys: commercially
important materials for the aerospace industry.

2. The EAM procedure

Within the EAM [6, 7], the total energy of the system is given by the sum of the single-atom
energies,Ei , where

Ei = F [ρi ] +
1

2

∑
j

φ(rij ) (1)

with

ρi =
∑
j

f (rij ). (2)

Heref (rij ) can be viewed as the electronic density that atomi ‘sees’ due to atomj andF [ρi ]
as the corresponding embedding energy of atomi when placed in the electronic density arising
from the surrounding atoms.φ(rij ) can be interpreted as the effective inter-atomic potential
due to electrostatic interaction as well as any modifications that the electronic response may
entail.

Equation (1) is invariant with respect to the transformation

F [ρi ] → F [ρi ] + κρi (3)

φ(rij )→ φ(rij )− 2κf (rij ). (4)

This has led Johnson [9] to suggest that for comparison between differing embedding energies
and inter-atomic potentials,κ be chosen such that the derivative ofF [ρi ] be zero at the bulk
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equilibrium densityρe. Thus in the bulk case, the structural contribution to the total energy
will be entirely due to the inter-atomic potential. Such a ‘standard form’ also facilitates a
natural representation for the inter-atomic potential between atoms of differing type [9].

Mei et al [10, 11] motivated by the work of Johnson [12] developed a method of
representation of both the inter-atomic potential and the embedding energy function that can be
applied to an arbitrary number of nearest-neighbour shells. This in part has been facilitated by
exploiting the universal scaling properties of solids when under compression or tension [13].
Furthermore, a natural form off (rij ) can be obtained from the manner in which the equilibrium
electron density scales as a function of nearest-neighbour separation

ρ(r̄) = ρe exp

[
−β

(
r̄

re
− 1

)]
(5)

wherere (the equilibrium nearest-neighbour distance) andβ are specific to the material of
interest.

Equation (5) can be equated to a summation overf (rij ):∑
m

smf (pmr̄) = ρ(r̄) (6)

wheresm is equal to the number ofmth-nearest-neighbour atoms at a distancepmre. Mei
et al [10] use a finite Maclaurin series to approximately invert this; however, recently, a multi-
dimensional generalization of the M̈obius inversion has allowed exact inversion for a variety
of crystallographic structures [14]. We employ the latter technique in the present analysis.

By exploiting the universal features of bulk solids (using the cohesive energy per atom as
a function of nearest-neighbour distance [13]) it is easy to show [10] that there exists a natural
form for the inter-atomic potential,

φ(r) = −φ0

[
1 + δ

(
re

r
− 1

)]
exp

[
−γ

(
re

r
− 1

)]
(7)

and the embedding energy,

F(ρ) = −Ec
(

1− ρ

ρe
ln [ρ/ρe]

)(
ρ

ρe

)α/β
+

1

2
φe
∑
m

sm exp
[−(pm − 1)γ

]
×
(

1 + (pm − 1)γ − pm δ
β

ln

[
ρ

ρe

])
(ρ/ρe)

pmγ/β . (8)

HereEc is the bulk cohesive energy and

α =
√

9B0�0/Ec

whereB0 is the equilibrium bulk modulus and�0 the equilibrium atomic volume. The
remaining parametersφ0, δ andγ are fitted to the elastic stiffness constants and the unrelaxed
monovacancy formation energy in the way originally outlined by Daw and Baskes [7].

To study a vacancy, a cubic FCC or BCC super-cell is constructed with the side length equal
to a multiple of the lattice constant. One atom is removed and the lattice is allowed to relax by
quenching the atom velocities each time the total kinetic energy reaches a maximum. When
this energy varies by no more than 1 meV, the entire super-cell undergoes volume relaxation to
produce the final zero-pressure configuration. This two-stage process is iterated until a stable
minimum is obtained. In practice, only one cycle need be performed before convergence is
achieved. The relaxed vacancy formation energy is then calculated via

Ervf = E(N − 1, V )− E(N, V0)
N − 1

N
(9)
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whereN is the number of atoms in the bulk super-cell. HereE(N, V0) is the total energy of
the bulk super-cell at volumeV0 andE(N − 1, V ) is the total energy of the relaxed super-
cell containing the vacancy at volumeV . The vacancy relaxation energy is then defined as
Er = Euvf − Ervf .

In an analogous way, the formation volume (the volume change due to relaxation) is given
by

�fv = V − V0
N − 1

N
. (10)

In general the MD implementation of the EAM involves a smooth cut-off of both the
inter-atomic potential and the electronic density function beyond the nearest-neighbour shell
included in the fit. The form used in the present work is that detailed by Meiet al [10].

3. Aluminium

Usingβ = 7.1 [11] andα = 4.6 [13], we fit the parametersφ0, δ andγ to the experimentally
known low-temperature elastic constants of aluminium [15] (C11 = 0.920, C12 = 0.693
andC44 = 0.365) and the unrelaxed vacancy formation energyEuvf . Published values for
Euvf typically range between 0.6 eV and 0.9 eV [16–20]. This wide spread is thought to be
primarily due to the particular choice of pseudopotential [21]. One such pseudopotential DFT
study of aluminium [17] using a 32-atom super-cell obtained an unrelaxed vacancy formation
energy equal to 0.78 eV. The value forEuvf implicit in the work of Mei and Davenport [11] is
approximately equal to 0.785 eV. This seems a natural first choice since it is close to values
used in other EAM applications to aluminium and its alloys [22, 23]. We also consider the
valueEuvf = 0.86 eV calculated by Mehl and Klein [19] who use a full-potential LAPW
non-pseudopotential method and also the valueEuvf = 0.64 eV found by Gillan [18] who uses
the simple local pseudopotential given by Goodwinet al [24]. In both of these cases a 27-site
super-cell was used.

In practice the parameters were fitted to(C11 − C12 + 3C44)/5, C12 andEuvf using a
modified Levenberg–Marquardt algorithm together with a finite-difference Jacobian. Many
good fits could be found reflecting the invariances within the EAM described by equations (3)
and (4). The solution set finally chosen minimized the error inEuvf .

ForEuvf = 0.78 eV and a third-nearest-neighbour model, the fitted values of the parameters
wereφ0 = 0.137 372,δ = 6.849 976 andγ = 7.220 678. These differ only slightly from
that given by Mei and Davenport [11]. Indeed, upon comparison using the corresponding
standard forms ofφ(r) andF(ρ), there is little noticeable difference. As a point of interest,
the constant parameterβ which is usually estimated via isolated Hartree–Fock wavefunctions
was also regarded as a free parameter, and together withφ0, δ andγ was fitted toC11,C12,C44

andEuvf . We found that equally good solutions could be obtained that were largely insensitive
to β over the range 6.8 to 7.2.

The resulting inter-atomic potential drops to below 0.05% of its most negative value beyond
the third-nearest-neighbour shell, thus justifying the third-nearest-neighbour approximation for
aluminium. However, the contribution [25] toEuvf from each nearest-neighbour shell drops
off rather more slowly beyond the first-nearest neighbour (first-shell contribution: 0.63 eV;
second-shell contribution: 0.08 eV; third-shell contribution: 0.05 eV). This suggests that for
greater two-digit accuracy, a model including a larger number of nearest-neighbour shells
is required. We found that a fifth-nearest-neighbour model is adequate for such purposes,
particularly forEuvf = 0.86. See figure 1 which displays the cumulative contributions to
Euvf for each shell. The corresponding values of the parametersφ0, δ andγ are listed in
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Figure 1. The cumulative contribution to
the unrelaxed vacancy formation energy as a
function of the shell number for aluminium.
Although a third-nearest-neighbour model for
aluminium is generally regarded as sufficient
for MD, in the present work we use a fifth-
nearest-neighbour model to achieve better
two-digit accuracy in the study of vacancy
relaxation.

Table 1. Fitted parameters for fifth-nearest-neighbour model for aluminium.

Euvf φ0 γ δ

0.64 0.185989 8.020566 5.070832
0.78 0.228011 7.235296 4.292098
0.86 0.153254 6.841691 6.416339

Table 2. Calculated relaxation energies in eV for aluminium obtained using the EAM for three
different unrelaxed vacancy formation energies.Ab initio values are also shown for comparison.

Euvf Ervf Er �fv

EAM 0.64 0.63 0.01 0.74
EAM 0.78 0.76 0.02 0.75
EAM 0.86 0.84 0.02 0.73
DFT (reference [18]) 0.64 0.62 0.02
DFT (reference [17]) 0.78 0.71 0.07
DFT (reference [19]) 0.86 0.83 0.03
DFT (reference [20]) 0.82 0.66 0.16 0.67
Experiment 0.67† 0.62‡

† Reference [26].
‡ Reference [28].

table 1 forEuvf = 0.64, 0.78 and 0.86 eV. Figure 2 and figure 3 display, in standard form, the
corresponding shapes of the embedding energy and the inter-atomic potential for all values
of Euvf .

Table 2 lists the relaxation energies and associated formation volumes calculated using
equations (9) and (10) as described in section 2. All simulations were performed using a
5× 5× 5 super-cell withN = 500. For comparison, the corresponding relaxation energies
obtained usingab initio techniques are included. We note that apart from the work of Benedek
et al [17], our calculated relaxation energies agree closely with those obtained viaab initio
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Figure 2. The embedding energy functional in standard form for aluminium withEuvf equal to
0.64, 0.78 and 0.86 eV.
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Figure 3. The inter-atomic potential in standard form for aluminium withEuvf equal to 0.64, 0.78
and 0.86 eV.
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techniques. A more recent study by Chettyet al [20] is also included. In their work aEuvf
of 0.82 eV is obtained and, via relaxation, they obtainEr = 0.15 eV which is somewhat
larger than the value obtained in the present work and those from the other DFT applications.
The authors comment that without volume relaxation, their relaxation energy is approximately
0.08 eV, indicating a significant energy contribution due to super-cell relaxation: an effect
not observed through the EAM and the otherab initio work [16,17]. The recommended [26]
experimental value forErvf is 0.67± 0.03 eV, suggesting that for an EAM application to
reproduce the correct relaxed vacancy formation energy, a value of approximately 0.7 eV
should be chosen forEuvf .

Figure 4 displays the structural relaxation away from the vacancy for each nearest-
neighbour cell. Again, comparison with first-nearest-neighbour DFT displacement values
[17,19] reveals a close similarity with our EAM results. For the higher-order nearest-neighbour
shells we see an oscillatory behaviour in which every third shell has a positive displacement.
On the other hand, an early force relaxation model given by Miller and Heald [27], which
assumes a simple first-nearest-neighbour pair potential, displays negative displacements for
shells and thus significant deviation from our second, fifth and eighth shell. Also shown are
the results of Chettyet al [20] for the first-, second- and third-neighbour shells. We remind
the reader that all DFT relaxation calculations have been performed on super-cells containing
up to 32 sites and it is currently not clear what the precise effect of such a small super-cell is
on the relaxation properties of higher-order shells. This is reflected in part by our work using
32-site and 108-site super-cells (see figure 5). For the 32-site super-cell the second-, fourth-
and fifth-shell displacements are completely suppressed and we find that at least an 108-site
super-cell is required to begin to reproduce the relaxation profile shown in figure 4. In figure 5
we also include the results of a 108-site orbital-freeab initio calculation [5] and we see that
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Figure 4. The structural relaxation around a vacancy in aluminium obtained using a 500-site
super-cell EAM forEuvf equal to 0.64, 0.78 and 0.86 eV.
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Figure 5. The structural relaxation around a vacancy in aluminium obtained using 32-site and 108-
site super-cell EAMs forEuvf equal to 0.64, 0.78 and 0.86 eV. For the 32-site super-cell, interactions
between the vacancy and its images clearly inhibit the relaxation process.

the EAM result is in close agreement, further substantiating the general trend of figure 4.
Like the relaxation energy, the formation volume appears insensitive toEuvf , resulting in

an average value of�fv = 0.75 eV. For small lattice relaxation, the formation volume for
cubic structures [27] is approximately given by

�fv = 3(C44− C12)

C11 +C12
+ 1 (11)

giving for aluminium,�fv = 0.57. In addition, Chettyet al [20] obtain a value of 0.62±0.05.
The EAM result compares well with these values (and experiment [28]) given the sensitivity
of �fv to chosen bulk equilibrium conditions.

4. Lithium

A similar fitting procedure to that used in the case of aluminium is applied to BCC lithium. We
use a cohesive energy of 1.65 eV,α = 3.1 (Roseet al [13]) and from isolated-atom Roothaan–
Hartree–Fock averaged atomic wavefunctions [29], determineβ = 6.9. Again, treating the
latter as a free parameter does not significantly affect the form of the final inter-atomic potential
and embedding energy functional. The low-temperature experimentally determined elastic
stiffness coefficients for lithium [15] areC11 = 0.1480,C12 = 0.125 andC44 = 0.108.
Again there are a variety of unrelaxed vacancy energies at our disposal. Franket al [16] have
undertaken anab initio pseudopotential study of monovacancies in lithium using super-cells
containing up to 54 sites, obtainingEuvf = 0.81 eV. On the other hand, Benedeket al [17]
obtain, for a similar super-cell, a value of 0.66 eV. Using a first-principles pair potential
calculation with a 128-site super-cell, Jacucci and Taylor [30] obtain the value 0.52 eV. We
choose these values for application to the EAM model.
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Application of the fitting procedure revealed that a potential consistent with a nearest-
neighbour approximation could only be found if up to the ninth-nearest neighbours were
included. It was only at this distance that the potential had reduced to 0.05% of its most
negative value. This is not surprising despite the statement made Benedeket al [17] that
in a MD pair potential model up to second-nearest neighbours need only be included: a
justification for their use of the 54-site super-cell. The lack of p-state core electrons in lithium
has the result that a component of the electron density will ‘see’ the full ionic potential and any
realistic pseudopotential must therefore be strongly non-local. Dagenset al [31] have shown
that the resulting inter-ionic potential is strongly oscillating and cannot be described by simple
linear response theory alone, the higher-order effective potential now containing the implicit
(albeit small) effects of three-body terms [32]. Indeed, a study by Duesberyet al [33] shows
that from the perspective of Ewald lattice summation, the asymptotic Friedel oscillations can
be replaced by an effective (damped) potential that for lithium extends out as far as four lattice
constants.

Table 3 lists the resulting fitted parameters and figure 6 displays the cumulative contrib-
utions to the fitted unrelaxed vacancy formation energies from each shell for both values of
Euvf obtained using the embedded energy functional and inter-atomic potential in their standard
form. We see such contributions extending up to eight- and ninth-nearest neighbours. Figure 7

Table 3. Fitted parameters for a ninth-nearest-neighbour model for lithium.

Euvf φ0 γ δ

0.52 0.0668747 4.885035 7.425925
0.66 0.0397088 4.141372 13.965110
0.81 0.0374230 3.622541 14.676643
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Figure 6. The cumulative contributions to the unrelaxed vacancy formation energy as functions of
the shell number for a ninth-nearest-neighbour model for lithium.
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Figure 7. The embedding energy functional in standard form for lithium withEuvf equal to 0.52,
0.66 and 0.81 eV.

2 3 4 5 6 7 8
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Lithium Interatomic Potential

 Eu

vf=0.52 eV

 Eu

vf=0.66 eV

 Eu

vf=0.81 eV

E
ne

rg
y 

(e
V

)

Distance (Å)

Figure 8. The inter-atomic potential in standard form for lithium withEuvf equal to 0.52, 0.66 and
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and figure 8 display in standard form the shapes of the embedding energy and the inter-atomic
potential for both values ofEuvf , the latter clearly extending up to the ninth-nearest-neighbour

distance (≈8.55 Å)

Table 4. Calculated relaxation energies in eV for lithium obtained using the EAM for three different
unrelaxed vacancy formation energies. Those in parentheses employ a larger cut-off distance (see
the text).Ab initio values are also shown for comparison.

Euvf Ervf Er �fv

EAM 0.52 (0.52) 0.37 (0.36) 0.15 (0.16) 0.35 (0.57)
EAM 0.66 (0.67) 0.39 (0.41) 0.27 (0.26)−0.81 (0.69)
EAM 0.81 (0.83) 0.45 (0.36) 0.36 (0.47) 1.58 (0.52)
DFT (reference [30]) 0.52–0.53 0.44–0.48 0.05–0.08 0.43
DFT (reference [17]) 0.66 0.57 0.09
DFT (reference [16]) 0.81 0.54 0.27 0.49
Experiment 0.34†–0.48‡

† Reference [34].
‡ Reference [35].

Using a 54-site super-cell with our fitted potential, it is clear that significant interaction
between the vacancy and its images cannot be ruled out. Thus in the present work all simulations
were performed using a 7×7×7 super-cell withN = 686 to ensure negligible vacancy–vacancy
interaction. The smooth cut-off was chosen to be just beyond the ninth-nearest neighbour.
Table 4 lists the relaxation energies and corresponding formation volumes forEuvf = 0.52, 0.66
and 0.81 eV. Comparison withab initio techniques indicates that the present EAM produces
a consistently larger relaxation energy. Unlike the case for aluminium, the relaxation energy
does depend strongly on the chosen value ofEuvf—reducing for smaller unrelaxed vacancy
formation energies. This trend is also seen in theab initio calculations. Experimental values
for the relaxed vacancy formation energy range from 0.34 eV [34], obtained using dilatometry,
to 0.48 eV [35], obtained using the difference between the self-diffusion activation energy and
the migration energy. It has been commented [17] that the latter is perhaps the more likely
upon comparison with the other alkalis. Thus to construct an EAM producing the former value
(0.34 eV), an unrelaxed vacancy formation energy of approximately 0.5 eV is needed and for
the latter (0.48 eV), a value of approximately 0.85 eV is needed.

Inspection of the corresponding formation volumes reveals severe irregularities, suggest-
ing that something is amiss. A look at figure 8 shows that the inter-atomic potentials for
Euvf = 0.81 eV and 0.66 eV extend beyond the ninth-nearest-neighbour shell, indicating that
we must include a greater number of nearest-neighbour shells. In the present work we simply
increase the cut-off in the MD simulations to include the tenth-neighbour shell. The resulting
formation energies and volumes are displayed in parentheses in table 4 and we see now that the
formation volumes for differentEuvf are not that dissimilar; indeed application of equation (11)
to lithium gives�fv = 0.56 which compares reasonably well with the EAM results. Table 4
shows that such a modification also affects the formation energies. On increasing only the
cut-off distance and not the distance to which the potential is fitted, the resulting relaxation
energies in general will be slightly larger due to the additional ‘bonds’ entailed in the MD
simulation. This effect diminishes for reducingEuvf since the potential approaches the regime
in which the ninth-nearest-neighbour assumption becomes valid.

Figure 9 displays the structural relaxation away from the vacancy for each nearest-
neighbour cell and displays again similar characteristics to the listedab initio results, although
the displacement magnitudes are consistently larger. This together with the EAM prediction
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Figure 9. The structural relaxation around a vacancy in lithium obtained using a 686-site super-cell
EAM for Euvf equal to 0.52, 0.66 and 0.81 eV.
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Figure 10. The structural relaxation around a vacancy in lithium obtained using a 54-site super-cell
EAM for Euvf equal to 0.52, 0.66 and 0.81 eV.

of relaxation energies larger than those obtained via DFT, may simply be due to the small
super-cells used in these calculations, since interactions between the vacancy and its images
in general tend to inhibit the relaxation phenomena. The situation compared to that for
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aluminium is somewhat better due to the larger super-cell used in the DFT calculations (54
sites corresponding to a 3× 3× 3 super-cell). Indeed an EAM simulation using a cell of this
size produced lattice displacements which agree extremely well with references [17] and [16]
(see figure 10).

5. Discussion

Inspection of the embedding energy functionals for aluminium (figure 2) and lithium (figure 7)
reveals that at equilibrium density, we haveF(ρe) ≈ Ec +Euvf for eachEuvf . Now the cohesive
energy at equilibrium is defined as

Ec = F(ρe) +
1

2

∑
m

smφ(r0pm) (12)

which together withF(ρe) ≈ Ec +Euvf implies

Euvf ≈ −
1

2

∑
m

smφ(r0pm). (13)

That is, the unrelaxed vacancy formation energy is defined entirely through the energy
associated with breaking the inter-atomic potential ‘bonds’. This is not surprising since the
exact definition forEuvf :

Euvf =
∑
m

sm [F(ρ − f (r0pm))− F(ρ)] − 1

2

∑
m

smφ(r0pm) (14)

reduces approximately to

Euvf ≈ F ′(ρ)
∣∣
ρ=ρe

∑
m

smf (r0pm)− 1

2

∑
m

smφ(r0pm) = −1

2

∑
m

smφ(r0pm) (15)

where the last equality holds only for the standard form.
For lithium, the embedding energy is almost a constant for a wide range of local densities,

indicating that local variations in density do not significantly affect the electronic contribution
to the cohesive energy. This is no doubt due to the extended nature of its inter-atomic potential.
Indeed, for lithium we haveC12−C44 = 0.017 which almost satisfies the first Cauchy relation
for cubic structures:C12− C44 = 0; that is, that the primary bonding is due to central-force
interactions. This is further substantiated byC12−C44 formally being defined as the curvature
of the embedding energy with respect to density variations [7]. Figure 7 clearly reflects this.
On the other hand, for aluminium, figure 2 displays a clear positive curvature which simply
reflects the fact that for this materialC12− C44 = 0.328. That is, a significant component of
the cohesive energy is electronic.

Thus application of the EAM to lithium demonstrates that for MD configurations in which
the local density does not change drastically, an equivalent pair potential model plus a constant
electronic term will suffice to reproduce the correct cohesive energy. We emphasize that this
is for reasons generally different from those operative for simple closed-shell systems (for
example helium), where the embedding energy is entirely a linear function of density. In
the case of lithium, the large inter-atomic potential is far more dominant than the dynamical
response of the electronic contribution to the cohesive energy, whereas for closed-shell systems
there is little or no electronic contribution.

Due to the negligible curvature of the embedding functional of lithium, the elastic stiffness
constants will depend primarily on the curvature of the inter-atomic potential [36]. With
equation (13) in mind and the relatively small experimental values ofC11, C12 andC44 for
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lithium, this suggests that the fitted inter-atomic potential as a function of increasing unrelaxed
vacancy formation energy should tend outward to accommodate larger values ofEuvf . Figure 8
displays such a trend. Typically, such an effect tends not to alter greatly the relative forces
between particles, thus explaining the insensitivity of structural relaxation as a function of
Euvf (figure 9). On the other hand, relative energies do change, as indicated in table 4, as a
result of the relaxation energies for lithium depending onEuvf . This is also reflected in figure 6
where the distribution of contributions to the unrelaxed vacancy formation energy from each
neighbour shell changes for increasing values ofEuvf .

For aluminium both the structural relaxation around the vacancy and the relaxation energy
are an order of magnitude smaller than for lithium. In part, this is due to the shorter-range inter-
atomic potential and the greater role played by the density term. Furthermore, the curvature
of the aluminium embedding energy around the equilibrium point (figure 6) is insensitive to
Euvf , leading to a corresponding insensitivity of the relaxation energy. Together, these trends
justify the use of simply the experimental vacancy formation energy as an empirical input to
EAM applications for aluminium.

6. Concluding remarks

The primary advantage of the EAM is that unlike inab initio methods there is little restriction
on the size of the super-cell. Where, in the latter, relaxation calculations have been primarily
performed using super-cells with side lengths of two lattice constants for aluminium and three
for lithium, we have demonstrated that at least a 3× 3× 3 super-cell is required to begin to
approach the converged result. To obtain converged results for aluminium a 500-site 5×5×5
super-cell and for lithium a 686-site 7× 7× 7 super-cell have been employed—a regime for
which orbital DFT is not yet feasible. For aluminium however, orbital-free DFT has been
applied to super-cells containing in the region of 108 and 256 sites [5, 37] demonstrating
relaxation properties similar to those predicted by the EAM (although the formation and
relaxation energies differ significantly from those obtained from our work and orbital-based
DFT). For this material a good local potential description exists; however, as already discussed,
for lithium such local potentials do not exist and there is considerable interest in extending the
orbital-free framework to non-local potentials (see the discussion in reference [5]).

The disadvantage of the EAM is that it requires the unrelaxed vacancy formation energy
(together with the elastic stiffness constants) as input to complete the semi-empirical form-
alism. In the present work we have demonstrated the relative insensitivity of this parameter
to the lattice relaxation dynamics of pure materials. For aluminium, the relaxation energy
also appears to be insensitive; however, for lithium this is not quite the case. Furthermore,
for lithium, unlike aluminium, the published experimental values forErvf cover a broad range.
The choice of which value to use for lithium may significantly affect the dynamics and kinetics
of an EAM application to the aluminium–lithium system. In future work we will investigate
this possible dependence by studying the diffusion properties of lithium in aluminium in the
presence of vacancies.
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